Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Phan Bá Hoàng

Cho hai số dương x,y thỏa mãn x+y=1. Tìm GTNN của biểu thức\(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)

Trần Trung Nguyên
6 tháng 12 2018 lúc 5:28

Ta có \(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)=x^2y^2+1+1+\dfrac{1}{x^2y^2}=x^2y^2+2+\dfrac{1}{x^2y^2}=\dfrac{x^4y^4+2x^2y^2+1}{x^2y^2}=\dfrac{\left(x^2y^2+1\right)^2}{\left(xy\right)^2}=\left(\dfrac{x^2y^2+1}{xy}\right)^2=\left(xy+\dfrac{1}{xy}\right)^2=\left(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\right)^2\)

Áp dụng bđt cosi, ta có \(xy+\dfrac{1}{16xy}\ge2\sqrt{xy.\dfrac{1}{16xy}}=2\sqrt{\dfrac{1}{16}}=2.\dfrac{1}{4}=\dfrac{1}{2}\)

\(2\sqrt{xy}\le\left(x+y\right)^2\Leftrightarrow\sqrt{xy}\le\dfrac{\left(x+y\right)^2}{2}=\dfrac{1}{2}\Leftrightarrow xy\le\dfrac{1}{4}\Leftrightarrow\dfrac{15}{16xy}\ge\dfrac{15}{4}\)

Vậy \(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\Leftrightarrow\left(xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\right)^2\ge\dfrac{289}{16}\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+y=1\\xy=\dfrac{1}{16xy}\\x=y\end{matrix}\right.\)\(\Leftrightarrow\)\(x=y=0,5\)

Vậy GTNN của \(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)=\(\dfrac{289}{16}\) và xảy ra khi x=y=0,5


Các câu hỏi tương tự
Rosie
Xem chi tiết
dia fic
Xem chi tiết
ghdoes
Xem chi tiết
Trần Ích Bách
Xem chi tiết
minh hy
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Zenitisu
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Hoàng
Xem chi tiết