\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}
hoặc (2y+3)2 =3y -1 =>
hoặc (2y+3)2 =-3y +1 =>
c) B>/1
+Nếu 2y+3 >0 hay y> -3/2
=> 3y -1 > 2y+3 => y >4 => y thuộc { 5;6;7...}
+ Nếu 2y+3<0 hay y < -3/2
=> 3y -1 < 2y+3 => y <4 => y thuộc { -2;-3;-4.....}