Cho x,y là hai số thực khác 0 thỏa mãn \(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A = 2013 - xy
A = \(\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)( với x >0, \(x\ne1\))
a) Rút gọn các biểu thức a,b
b) Tìm các giá trị của x sao cho giá trị của biểu thức B nhỏ hơn giá trị của biểu thức A
Cho x>0, Tìm giá trị nhỏ nhất của biểu thức \(M=9x^2-5x+\frac{1}{9x}+2020\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho hai số x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2}{1-x}+\frac{1}{x}\) với 0<x<1
Cho A=\(\frac{3\sqrt{x}+1}{x+\sqrt{x}}\) và B=\(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)với x > 0,x\(\ne\)\(\frac{1}{9}\)
a)Tính giá trị của A khi x=4
b)rút gọn biểu thức P=A.B
c)Tìm x nguyên sao cho biểu thức \(\frac{1}{P}\)đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
Cho x > 0, tìm giá trị nhỏ nhất của biểu thức:
\(B=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2020\)
CHO BIỂU THỨC: \(A=\frac{x+7}{\sqrt{x}}\)và \(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) với \(x>0;x\ne9\)
1) tính giá trị của A khi \(x=1,44\)
2) rút gọn biểu thức B
3) tìm giá trị nhỏ nhất của biểu thức \(S=\frac{1}{B}+A\)