A = \(5.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
= \(5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(5.\left(1-\frac{1}{100}\right)\)
= \(5-\frac{5}{100}<5\)
=> A < 5 (Đpcm).
A=5(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
A=5\(\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\right]\)
A=\(5\left(1-\frac{1}{100}\right)\)
Ta có: 1-\(\frac{1}{100}\)<1
=>5(1-\(\frac{1}{100}\))<5.1
=>A<5 (đpcm)