\(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\\ =\left[\left(x^2+1\right)+x\right].\left[\left(x^2+1\right)-x\right].\left(x^4-x^2+1\right)\\ =\left[\left(x^2+1\right)^2-x^2\right].\left(x^4-x^2+1\right)\\ =\left(x^4+2x^2+1-x^2\right).\left(x^4-x^2+1\right)\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\\ =\left(x^4+1\right)^2-\left(x^2\right)^2\\ =x^8+2x^4+1-x^4\\ =x^8+x^4+1\)
\(Ta\ thấy:\) \(x^8;x^4>=0\forall x\in R\\ =>x^8+x^4+1>=1\)
\(Hay : A>0(DPCM)\)