bài này hơi khó bạn ơi, mk mới 6 lên 7 nên ko rõ
Ta có : \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(5a-3b\right)^2-16c^2\)
Mà theo đề \(\left(5a-3b+4c\right)\left(5a-3b-4c\right)=\left(3a-5b\right)^2\)
nên \(\left(5a-3b\right)^2-16c^2=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=16c^2\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=16c^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16c^2\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=c^2\Leftrightarrow a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\) nên \(a;b;c\) là độ dài 3 cạnh tam giác vuông theo Pytago đảo
Ta có : (5a−3b+4c)(5a−3b−4c)=(5a−3b)\(^2\)−16c\(^2\)
theo đề bài (5a−3b+4c)(5a−3b−4c)=(3a−5b)\(^2\)
nên (5a−3b)\(^2\)−16c\(^2\)=(3a−5b)\(^2\)
⇔(5a−3b)\(^2\)−(3a−5b)\(^2\)=16c\(^2\)
⇔(5a−3b−3a+5b)(5a−3b+3a−5b)=16c\(^2\)
⇔(2a+2b)(8a−8b)=16c\(^2\)
⇔(a+b)(a−b)=c\(^2\)⇔a\(^2\)−b\(^2\)=c\(^2\)
⇒a\(^2\)=b\(^2\)+c\(^2\)