Cho các số x,y,z thỏa mãn : x^2+y^2+z^2=xy+yz+zx và x^2018 +y^2018+z^2018=3. Tính giá trị của biểu thức P=x^28+y^57+z^2017
Tìm giá trị nhỏ nhất của biểu thức D=x^2+5y^2+2xy-2y+2005. Tìm giá trị lớn nhất của biểu thức Q=-x^2-2y^2+2xy-y+1
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm giá trị lớn nhất của biểu thức
x2+2y2+2xy-2y
Chuyên Phú Thọ 2017
Tính giá trị biểu thức \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)với x,y,z là các số thỏa mãn \(xzy=5\)và biểu thức \(P\)có nghĩa
cho x,y là các số thực ko âm tm: x+y+z=2.Tìm giá trị nhỏ nhất của biểu thứcx^4+Y^4+Z^4 .
Cho x^2 +y^2 +z^2 =10. Tính giá trị của biểu thức :
P= ( xy+yz+ zx ) ^2 + (x^2 - yz ) ^2 + ( y^2 -xz ) + ( z^2 -xy ) ^2
Cho: \(x;y;z\) là các số thực thoả mãn điều kiện: \(\frac{3}{2}x^2+y^2+z^2+yz=1\)
Tìm giá trị lớn nhất của: \(A=x+y+z\)
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y