Ta có: xyz=46656
<=> x.xk.xk^2=46656
<=> x^3k^3=46656
<=> xk=36 hay y=36
<=> x+y=144-y=144-36=108
Ta có: xyz=46656
<=> x.xk.xk^2=46656
<=> x^3k^3=46656
<=> xk=36 hay y=36
<=> x+y=144-y=144-36=108
Có 3 số thực x,y,z có tổng là 114 và có tích là 46656 . Nếu y = xk và z = xk^2 ( k là 1 số thực ) thì giá trị của x + z là ...
Cho ba số thực x,y,z có tổng là 144 và có tích là 46656.Nếu y=xk và z=xk2 ( k là 1 số thực), thì giá trị của x+z=?
Cho 3 số thực x, y, z có tổng là 114 và có tích là 46656. Nếu \(y=xk\) và \(z=x^2k\) (k là 1 số thực), thì giá trị của x+z=?
cho x + y + z = 144 và xyz = 46656 nếu y = xk và z = xk^2 ( k là 1 số thực ) thì x + z = ?
cho biểu thức M= \(\frac{x^2+y^2-z^2}{2xy}\)+\(\frac{y^2+z^2-x^2}{2yz}\)\(+\frac{z^2+x^2-y^2}{2xz}\)
a, cmr nếu M=1 thì trong ba số x,y,z có một số bằng tổng hai số kia và trong biểu thức M có hai phân thức có giá trị bằng 1, phân thức còn lại có giá trị bằng -1
b, nếu x,y,z là các độ dài đoạn thẳng và M>1 thì x,y,z là độ dài ba cạnh của một ta giác
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Cho x,y,z,p,q,r là các số thực dương thỏa mãn điều kiện x+y+z = p+q+r 1 và pqr <=1/2
a) Chứng minh nếu x <=y <=z thì px+qy+rz >= (x+y)/2
b) Chứng minh nếu px + qy+rz >=8xyz
Cho đa thức A=(x+y)(y+z)(z+x) + xyz
a) Phân tích A thành nhân tử
b) Chứng minh nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
Tìm tất cả các bộ ba ( x, y, z) sao cho x, y, z là các số nguyên và x, y, z là độ dài ba cạnh của tam giác vuông có số đo diện tích bằng số đo chu vi ( không kể đơn vị đo)