Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
Mình cần câu a ạ :<
Mình sorry vì hôm trước bảo câu a sai nha
Cách giải câu a này:
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(\Leftrightarrow2xyz=\left(xy+yz+zx\right)-\left(x+y+z\right)+1\)
Ta có BĐT: \(xy+yz+zx\le x^2+y^2+z^2\)(BĐT này chắc bạn thấy nhiều lần roi, mình ko chứng minh lại nha)
\(\Rightarrow2xyz\le\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+1=\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2+\frac{1}{4}\)
\(\Rightarrow2xyz\le\frac{1}{4}\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{2}\)
Xét \(x,y,z>0\Rightarrow xyz>0\)
Vậy \(0< xyz\le\frac{1}{8}\)