Cho x, y, z khác 0 thỏa mãn x + y + z = 2019 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2019}\)
Chứng minh rằng có ít nhất một trong 3 số bằng 2019.
Cho x,y,z là các số thực thỏa mãn : \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)+z . Tính \(A=2018x+y^{2019}+z^{2019}\)
cho ba số x,y,z thỏa mãn \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}\)
Chứng minh : 4.(x-y)(y-z)=\(\left(z-x\right)^2\)
giúp mình vs
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Cho 3 số x,y,z thỏa mãn xyz = 1
Tính tổng \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}\)
Chứng minh rằng không tồn tại các số nguyên x,y,z phân biệt thỏa mãn : \(\frac{2017}{|x-y|}\)=\(\frac{2019}{|y-z|}\)=\(\frac{2015}{|z-x|}\)= K \(\in\)\(ℤ\)
Cho x,y,z là các số nguyên dương và x+y+z là số lẻ, các số thực a,b,c thỏa mãn \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}\) .Chứng minh rằng a=b=c
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)