Cho các số thực dương a,b,c thỏa mãn điều kiện abc=1. Chứng minh rằng\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{2}\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
Cho a,b,c là các số thực thỏa mãn điều kiện abc=1.Chứng minh rằng
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}>=\frac{3}{4}\)
cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Chứng minh rằng:
\(\frac{1}{^{a^4\left(a+b\right)}}+\frac{1}{b^4\left(b+c\right)}+\frac{1}{c^4\left(c+a\right)}\ge\frac{3}{2}\)
Cho 3 số thực dương a,b,c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
1. Cho 2 số thực a, b thỏa điều kiện ab = 1, a + b khác 0. Tính GTBT:
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
2. Giải phương trình \(2x^2+x+3=3x\sqrt{x+3}\)
3. Chứng minh rằng \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\) với mọi a, b, c nguyên.
4. Cho 2 số dương a, b thỏa mãn \(a+b\le1.\) Chứng minh rằng: \(a^2-\frac{3}{4a}-\frac{a}{b}\le-\frac{9}{4}\)
Cần GẤP nhé m.n!!! m.n ko cần phải làm hết đâu...
Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right)\le1\)