Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hoàng

Cho ba số a; b; c đôi một phân biệt. Chứng Minh Rằng:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

zZz Cool Kid_new zZz
1 tháng 4 2019 lúc 19:09

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)Chứng minh tương tự,ta có:\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1);(2);(3) suy ra:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^{đpcm}\)


Các câu hỏi tương tự
Nguyễn Minh Vũ
Xem chi tiết
Mách Bài
Xem chi tiết
Lê Hữu Thăng
Xem chi tiết
nguyenvanviet
Xem chi tiết
Xem chi tiết
Nguyễn Thị Thùy Trang
Xem chi tiết
Phạm Đăng Cường
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
nguyen van viet
Xem chi tiết