Xét \(B=4+4^2+4^3+...+4^{17}\)
\(B=4+\left(4^2+4^3+4^4+4^5\right)+\left(4^6+4^7+4^8+4^9\right)+...+\left(4^{14}+4^{15}+4^{16}+4^{17}\right)\)
\(B=4+4^2\left(1+4+4^2+4^3\right)+4^6\left(1+4+4^2+4^3\right)+...+4^{14}\left(1+4+4^2+4^3\right)\)
\(B=4+4^2\cdot85+4^6\cdot85+...+4^{14}\cdot85\)
\(B=4+85\left(4^2+4^6+...+4^{14}\right)\)
\(B=4+17\cdot5\left(4^2+4^6+...+4^{14}\right)\)
Mà \(17\cdot5\left(4^2+4^6+...+4^{14}\right)⋮17\)
\(\Rightarrow4+17\cdot5\left(4^2+4^6+...+4^{14}\right)\)chia 17 dư 4
Hay \(B\)chia 17 dư 4 (ĐPCM)
\(B=4+4^2+4^3+4^4+........+4^{17}\)
\(B=4+\left(4^2+4^4\right)+\left(4^3+4^5\right)+...+\left(4^{15}+4^{17}\right)\)
\(B=4+4^2\left(1+4^2\right)+.....+4^{15}\left(1+4^2\right)\)
\(B=4+4^2.17+....+4^{15}.17\)
\(B=4+17.\left(4^2+4^3+...+4^{15}\right)\)
\(\Rightarrow\)\(17.\left(4^2+4^3+...+4^{15}\right)\)\(⋮17\)
\(\Rightarrow B:17\)\(dư\)\(4\)
\(\text{Vậy B chia 17 dư 4}\)