Cho a,b,c,d là 4 số khác 0 thoả mãn\(b^2=ac,c^2=bd\) và\(b^3+c^3+d^3\)khác 0. Chứng minh rằng:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\)
Cho \(a^2=bd;b^2=ac;a+b+c\ne0;a^3+b^3+c^3\ne0\)
Chứng minh rằng \(\frac{d}{c}=\frac{a^3+b^3+c^3}{b^3+c^3+a^.}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Cho \(b^2=ac\) ; \(c^2=bd\). Chứng minh rằng:
a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b) \(\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^2+8c^3+125d^3}\)
cho a; b; c; d là 4 số khác 0 thỏa mãn: b2=ac ; c2=bd và b3 + c3 + d3 khác 0
chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
giúp mình nha. mình đang cần gấp
Cho b2=ac;c2=bd với b,c khác 0; b+c khác d;b3+c3 khác d3. Chứng minh \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)=\(\left(\frac{a+b-c}{b+c-d}\right)^3\)
Cho b^2=ac ; c^2= bd. Với b,c,d \(\ne\)0; b+c \(\ne\) d; b^3+c^3\(\ne\)d^3
Chứng minh rằng \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
Cho b2 = ac ; c2 = bd với b, c, d \(\ne\)0 ; b + c \(\ne\)d , b3 + c3 \(\ne\)d3
Chứng minh rằng: \(\frac{a^3+b^3-c^3}{b^3+c^3+d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
Cho b2 = ac; c2 = bd. Chứng minh rằng:
a,\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b,\(\frac{3a^2+5b^4-7c^6}{3b^2+5c^4-7d^6}=\frac{2a^3+4b^5-6c^7}{2b^3+4c^5-6d^7}\)
Giúp mk nha, thứ 3 mình nộp ùi
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)