cho b^2 = a.c và c^2=b.d . tính \(\frac{a}{d}+\left(\frac{-a-b-c}{b+c+d}\right)^3\)
Cho b2 = a.c ; c2 = b.d . Chứng minh :
a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b) \(\frac{a}{d}=\frac{a^3+8.b^3+125.c^3}{b^3+8.c^3+125.d^3}\)
cho \(b^2=a.c;c^2=b.d\) . với \(b,c,d\ne0;b+c\ne d;b^3+c^3\ne d^3\)
Chứng minh rằng
\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
cho a,b,c là các số khác 0 thỏa mãn b2=a.c và c2 =b.d . CM :\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Cho b2 = a.c; c2 = b.d
Chứng minh rằng \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
\(\frac{3a^2+5b^4-7c^6}{3b^2+5c^4-7d^6}=\frac{2a^3+4b^5-6c^7}{2b^3+4c^5-6d^7}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
\(a,\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\) \(b,\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)\(c,\frac{a.c}{b.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
GIẢI GIÚP TỚ NHANH NHÉ! CẢM ƠN NHIỀU!
CHO \(a,b,c,d\ne0\)VÀ\(b^2=a.c;c^2=b.d;b^3+c^3+d^3\ne0\)
\(CMR:\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho \(b^2=a.c\)và \(c^2=b.d\) (a,b,c,d là các số khác 0; b+c\(\ne\)d và \(b^3+c^3\)\(\ne\)\(d^3\))
CMR: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)= \(\left(\frac{a+b-c}{b+c-d}\right)^3\)
giúp mink nha
cho a,b,c,d khác 0 thỏa mãn
\(b^2\)=a.c ;\(c^2\)=b.d
chứng minh rằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)