Bài 7: Tỉ lệ thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Quỳnh Tiên

Cho b^2=ac. Chứng minh rằng: a/c=a^2+ab/b^2+bv.Giúp mk vs mình đang cần gấp

Vũ Minh Tuấn
7 tháng 12 2019 lúc 11:48

Ta có: \(b^2=ac.\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}.\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{a^2+b^2}{b^2+c^2}.\)

\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}.\)

\(\Rightarrow\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Rightarrow\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+b^2+ab}{b^2+c^2+bc}.\)

\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2+ab}{b^2+c^2+bc}\left(đpcm\right).\)

Mình nghĩ là chứng minh như thế mới đúng.

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Uzumaki Naruto
Xem chi tiết
do nguyen
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Do Nga
Xem chi tiết
Linh Luna
Xem chi tiết
Diệp Nguyễn
Xem chi tiết
Đặng Đức Lương
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết