Cho \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
Tìm số nguyên dương x để \(B=115\)
cho B=\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
tìm x\(\in\)Z, để B=115
B=1+\(\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+X\right)\)
Tìm số nguyên dương x để B=115
Giải Nhanh Giups Mình Cần Gấp Lắm
3. Cho \(A=\frac{3x-1}{x-1}\)và \(B=\frac{2x^2+x-1}{x+2}\)
a) Tìm \(x\inℤ\)để A; B là số nguyên
b) Tìm \(x\inℤ\)để A và B cùng là số nguyên
4. Thực hiện phép tính
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2017.2019}\right)\)
\(S+\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{6^2}\right)...\left(1-\frac{1}{99^2}\right)\)
là S =... nhé, ko phải S +...
Cho hàm số \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\).Tìm các số nguyên dương x,y sao cho:
\(S=f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.
b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.
c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên
Bài 2:a,Với giá trị nào của x thì ta có:
1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương 2,B=\(\frac{x-0,5}{x+1}\)là số âm.
b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)
c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.
Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)
B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\) C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\) D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\) F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
a,Tính \(\frac{2^{12}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)
b, Cho a,b,c là các số nguyên dương. CMR:
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)> 1.
c, Tính bằng cách hợp lí:
\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{99^2}-1\right)\)
Bài 1 : Thực hiện phép tính
(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)
(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Bài 2 : Tìm x biết
(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)
(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)
(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)
Bài 3 :
(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)
CMR : \(\frac{A}{B}\)Là 1 số nguyên
(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)
Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.
VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4
(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7
bài 1
a) cho B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\). Chứng minh B >99
b)chứng minh \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n\right)⋮2^n\)với n nguyên dương
c) cho đa thức f(x) = ax^3 + bx^3 + cx + d . với f(0) và f(1) là các số lẻ. CMR f(x) không có nghiệm là số nguyên.