Tìm điều kiện để hai phương trình sau có ít nhất một nghiệm chung:
\(2x^2-\left(3m+2\right)x+12=0\)(1)
\(4x^2-\left(9m-2\right)x+36=0\)(2)
cho \(a\ge0,b\ge0,c\ge0\) thỏa mãn a+2b+c=1
chứng minh rằng ít nhất một trong hai phương trình sau có nghiệm
\(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)
\(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)
1.Giải phương trình: \(\left(1+\frac{1}{x}\right)^3.\left(1+x^3\right)=16\)
2.Cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{a^3.\left(7b+3c\right)}+\frac{1}{b^3.\left(7c+3a\right)}+\frac{1}{c^3.\left(7a+3b\right)}\ge\frac{1}{10}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
3.Tìm tham số m để phương trình ẩn x sau \(\left(x^2+4x+12\right).\left(x^2+12x+20\right)=m\)có 4 nghiệm phân biệt
GIÚP MÌNH VỚI NHA
Giải chi tiết hộ mk
a)Cho hai phương trình \(x^2+2mx+mn-1=0\) và \(x^2-2nx+m+n=0\) (m,n là tham số)
Chứng minh rằng với mọi giá trị của m và n ít nhất một trong hai phương trình trên có nghiệm
b)Gọi a và b là 2 nghiệm của phương trình \(x^2+px+1=0\)
c và d là 2 nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức \(\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)=\left(p-q\right)^2\)
Trong các phương trình sau,phương trình nào có ít nhất một nghiệm là số nguyên?
A.\(\left(x-\sqrt{5}\right)^2=5\) B.9x2-1=0 C.4x2-4x+1=0 D.x2+x+2=0
Cho a, b, c, d là các số thực thỏa mãn: \(a^2+b^2< 1\). Chứng minh rằng phương trình sau luôn có hai nghiệm:
\(\left(a^2+b^2-1\right)x^2-2\left(ac+bd-1\right)x+c^2+d^2-1=0\)
1) TÌm giá trị lớn nhất và nhỏ nhất của biểu thức P =\(\sqrt{x-1}+\sqrt{3-x}\)
2) Giải phương trình \(x^2+9x+21=\sqrt{2x+9}\)
3) Cho x ,y thay đổi thỏa mãn\(0< x< 1;0< y< 1\)
Tìm giá trị lớn nhất của biểu thức P =\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
4) Cho các số dương a,b,c,d thỏa mãn \(ab+bc+ca=1\)
Chứng minh rằng: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Tìm m để phương trình \(x^2+2\left(m-2\right)x+m^2-10=0\left(1\right)\)có hai nghiệm thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}=10\)