Cho a/(x+y)=13/(x+z) và 169/(x+z)^2=-27/(z-y)((2x+y+z)
Tính A=(2a^3-12a^2+17a-2)/(a-2)
Cho \(\frac{a}{x+y}=\frac{13}{x+z}\)và \(\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính giá trị của biểu thức: \(E=\frac{2a^3-12a^2+17a-2}{a-2}\)
Cho \(\frac{a}{x+y}\)=\(\frac{13}{x+z}\)và \(\frac{169}{\left(x+z\right)^2}\)=\(\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\). Tính giá trị của biểu thức A=\(\frac{2a^3-12a^2+17a-2}{a-2}\)
cho a/x+y=13/x+z và 169/(x+z)^2=-27/(z-y).(2.x+y+z)
tính giá trị của biểu thức A=2.a^3-12a^2+17.a-2/a-2
Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?
a) Tìm giá trị a,b biết: a^2 - 2a + 6b + b^2 = -10.
b) Tính giá trị của biểu thức: A = (x+y)/z + (x+z)y + (y+z)/x nếu 1/x + 1/z + 1/y = 0.
Cho biểu thức: P=\(\frac{a^6-2a^5+a-2}{a^5+1}\)
a) Rút gọn biểu thức P
b) Tính giá trị biểu thức P biết rằng \(\frac{a}{x+y}=\frac{5}{x+z}\)và \(\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}\)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
cho biểu thức \(P=\frac{a^6-2a^5+a-2}{a^5+1}...\)
a Rút gọn P
b tính giá trị của P biết \(\frac{a}{x+y}=\frac{5}{x+z}\)và \(\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}...\)