Cho biểu thức :
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-3}{\sqrt{x-9}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{1}\right)\)
a) Rút gọn
b) Tính A khi x = \(4-2\sqrt{3}\)
c) Tìm x để A < -1/2
d) Tìm Min của A
Phân tích đa thức thành nhân tử: a) \(4ab+a^2-3a-12b\)
b) \(x^3+3x^2+3x+1-27y^3\)
Cho đa thức: A(x) = \(x^4+mx^3-55x^2+nx-156\) chia hết cho (x-2) và (x-3).
a. Hãy tìm giá trị của m và n
b. Từ m và n tìm được ở ý a hãy tìm nghiệm của A(x).
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
3) phân tích đa thức P (x) = (3x-2)3 + ( 1-2x )3 + ( 1-x )3 thành nhân tử
4) cho abc là 3 số thực thỏa mãn đk a+b+c+\(\sqrt{abc}\) = 4. tính giá trị biểu thức :
A = \(\sqrt{a\left(4-b\right)\left(4-c\right)}\) + \(\sqrt{b\left(4-c\right)\left(4-a\right)}\)+ \(\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
cho 2 biểu thức P=\(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\) và Q = \(\frac{1}{\sqrt{x}-1}-\frac{x+2}{x\sqrt{x}-1}\) với x>0,x≠1
a) Tính giá trị của biểu thức khi x=25
b) Chứng minh rằng Q-P= \(-\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
c) Tìm giá trị lớn nhất của biểu thức A= \(\sqrt{x}-\frac{2}{P-Q}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
A=\(\dfrac{x+2}{x-5}\) B=\(\dfrac{3x+1}{2-x}\) C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Cho các biểu thức A = \(\frac{2}{\sqrt{x}+5}+\frac{x-3}{x+5\sqrt{x}}\) và B = \(\frac{\sqrt{x+3}}{\sqrt{x}}\) với x > 0
1) Tính giá trị của biểu thức B khi x = 2
2) Hãy rút gọn biểu thức P = A : B
3) Với Q = 3.P +\(\frac{7}{\sqrt{x}+5}\), tìm giá trị của x để biểu thức Q nhận giá trị nguyên
Mong mọi người giúp đỡ. Em sắp thi tuyển sinh. Sau đây là đề thi thử của tỉnh Bình Dương năm 2017-2108 phần đại số.
Câu1 Tính
a) 3x2 - x -2 \(\sqrt{3x^2-x-2}\)= 1
b) \(\dfrac{x^4-3x^2+2}{\left(x+1\right)\left(x-\sqrt{2}\right)}=0\)
c) \(\left\{{}\begin{matrix}\dfrac{1}{X}+\dfrac{3}{Y}=6\\\dfrac{4Y+X}{XY}=12\end{matrix}\right.\)
Câu2: Cho
mX2 - (m+2)X + m + 4 =0 ( ĐK: m≠0)
a) Chứng minh rằng phương trình luôn có nghiệm ∀X ∈R
b) Tim m sao cho phương trình không nhận nghiệm là 0. Đồng thời tính nghiệm phương trình khi m= X- 4
c) Tìm m để có 2 nghiệm đối nhau.
d) Giả sử X,Y là nghiệm phương trình trên. Khi đó, tìm m để thoả:
\(\dfrac{1}{\sqrt{X}}+\dfrac{1}{\sqrt{Y}}=\sqrt{X^2+Y^2}\)
Câu3 Hai xe suất phát từ A đến B. Xe nhất đi trước xe thứ 2 3h. Đi được đoạn đường thi gặp trục trặc nên trong 15’ vẫn tốc của xe đã giảm đi 20km/h so với ban đầu . Chính vì vậy xe thứ hai đã đến trước xe thứ nhất 5’. Biết vận tốc xe thứ 2 lớn hơn xe thứ nhất là 40km/h.
a) Tính vận tốc ban đàu của hai xe.
b) Đoạn đường trong suốt khoảng thời gian trục trặc của xe nhất là bao nhiêu km? Khi đó xe thứ 2 còn bao nhiêu giờ nữa mới đến B?
Câu4 A=\(\left(\left(\dfrac{\left(1+\sqrt{X^{ }}\right)^2}{x+1}+\dfrac{\left(1-\sqrt{X}\right)^2}{x+1}\right)x^3\right)^2\)- 4x6 + 8x5 -8. ( ĐK X≠1 và X>0)
a) Rút gọn biểu thức A.
b) Tính khi A= x + 8x5
c)Tìm GTNN của A
Câu5 Cho đồ thị y=2x2 -4 (P) và (d): y=4x+9.
a) Vẽ (P)
b) Viết phương trình (a) sao cho tiếp xúc với (P) và song song với (d).
c) Cho (d1) y=5x-10 và (d2) y=0,5x+0,25. Tìm điểm đồng quy của của hai đường thẳng trên với (a).
Cho biểu thức :
A= \(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
a) Tìm điều kiện của x để biểu thức A có nghĩa .
b) Rg
c) Tìm giá trị của x để A <1