cho A= x^3+y^3+z^3-3xyz.
1. CMR: nếu x+y+z=0 thì A=0
2. Điều ngược lại có đúng ko?
Cần Gấp!!!!!
THANKS!
CÂU HỎI ĐÊM KHUYA KILL TIME ĐÂY
CM: Nếu x3+y3+z3=3xyz thì x+y+z=0 hoặc x=y=z
a) Chứng minh rằng : \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
b) Cho \(A=\) \(x^3+y^3+z^3-3xyz\)
* Chứng minh rằng \(x+y+z=0\) thì \(A=0\) * Điều đảo lại có đúng không
ứng dụng câu x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2)
giải bài toán
cho a+b+c=0. CM a^3+b^3+c^3=3abc
CMR
a) Nếu \(x^2+y^2+z^2=xy+yz+xz\)thì x=y=z
b) Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
cho x, y, z thỏa mãn x^3+y^3+3xyz<0 và z>0. chứng minh x+y<z
chứng minh nếu x+y+z=0 thì x3+y3+z3=3xyz
Cho biết x3 + y3 + z3 = 3xyz
Cm rằng x + y + z = 0 hoặc x = y = z
Cho x,y,z là 3 số khác 0 thỏa mãn điều kiện x3+y3+z3=3xyz và x+y+z=0.Tính giá trị của biểu thức:
\(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)