Có: \(A=x^3-x^2+2\)
\(=x^3+1-x^2+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)
A là số dương
<=> \(\left(x+1\right)\left(x^2-2x+2\right)>0\)
Vì \(x^2-2x+2=\left(x-1\right)^2+1>0\)
=> \(\left(x+1\right)>0\)
<=> x > - 1
A là số nguyên => x nguyên
Vậy để A là số nguyên dương thì x là số nguyên và x > -1.