Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\)
\(B=\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)
Chứng minh rằng 7<A+B<8. tìm [A+B]
Cho B=\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\) , C=\(\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)
Chứng minh rằng 7<B+C<8
B=\(\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20}+2\sqrt{43}+24\sqrt{3}\)
Rút gọn các biểu thức sau:
a.\(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
b.\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
c.\(\sqrt{8+\sqrt{40}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}+\sqrt{20}+\sqrt{8}}\)
d.\(\sqrt{10+\sqrt{24}-\sqrt{40}-\sqrt{60}}\)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{20}\)-3\(\sqrt{45}\)-\(\dfrac{1}{2}\sqrt{80}\)
b) 12\(\sqrt{54}\)-\(\dfrac{2}{5}\)\(\sqrt{150}\)+3\(\sqrt{24}\)
a,\(\sqrt{14-3\sqrt{20}}\)
b,\(\sqrt{62-24\sqrt{3}}\)
Cho \(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}\)
(2006 dấu căn) (2006 dấu căn)
CM: 7<T<8
Tính \(D=\left(13-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)