Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Tìm giá trị lớn nhất của A
Với a,b,c , d là các số dương và \(a+b+c+d\le1\)\(A=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
Mấy bác làm ơn làm phước giúp con bài này với, con ngồi cắn bút từ sáng tới giờ ༼☯﹏☯༽
Cho 4 số dương a,b,c,d. Đặt \(x=2a+b-2\sqrt{cd},y=2b+c-2\sqrt{ad},\)
\(z=2c+d-2\sqrt{ab},t=2d+a-2\sqrt{bc}\). Chứng minh rằng trong 4 số x,y,z,t có ít nhất 2 số dương
4 số a,b,c,d bất kì. Chứng minh \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) nhỏ hơn hoặc bằng \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
cho a,b,c dương và a+b+c=1.CMR: \(\frac{\sqrt{\left(^{a^2+2ab}\right)}}{\sqrt{\left(b^2+2c^2\right)}}+\frac{\sqrt{\left(^{b^2+2bc}\right)}}{\sqrt{\left(c^2+2a^2\right)}}+\frac{\sqrt{\left(^{c^2+2ac}\right)}}{\sqrt{\left(a^2+2b^2\right)}}\ge\frac{1}{a^2+b^2+c^2}\)
1.Cho bốn số dương a, b, c, d.
Chứng minh rằng
: \(\sqrt{ab}+\sqrt{cd}< =\sqrt{\left(a+d\right)}\left(b+c\right)\)
2. Cho a2+b2 =<2
Chứng minh rằng:
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}=< 6\)
Cho 4 số a,b,c,d bất kì, CMR:
\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
cho a,b,c,d cùng dấu. cmr:
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)