\(A=\left(n+1\right)^4+n^4+1=n^4+4n^3+6n^2+4n+1+n^4+1=2\left(n^4+2n^3+3n^2+2n+1\right)=2\left(n^2+n+1\right)^2\).
Do \(n\in\mathbb{N}*\) nên dễ dàng suy ra A chia hết cho một số chính phương khác 1.
\(A=\left(n^2+2n+1\right)^2-n^2+\left(n^4+n^2+1\right)\)
\(A=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)
\(A=\left(n^2+n+1\right)\left(2n^2+2n+2\right)\)
\(A=2\left(n^2+n+1\right)^2\)
\(\Rightarrowđpcm\)