Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nghiem thi phuong uyen

cho \(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right).\)

Tìm x để A \(\ge\frac{3}{2}\)

Tạ Đức Hoàng Anh
12 tháng 8 2020 lúc 21:20

Ta có: \(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)     (   ĐKXĐ: \(x>0,\)\(x\ne0,\)\(x\ne1\))

    \(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\left(\frac{2\sqrt{x}}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để \(A\ge\frac{3}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

    \(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{3}{2}\ge0\)

    \(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}+3}{2.\left(\sqrt{x}-1\right)}\ge0\)

    \(\Leftrightarrow\frac{5-\sqrt{x}}{2.\left(\sqrt{x}-1\right)}\ge0\)

+ TH1\(\hept{\begin{cases}5-\sqrt{x}\ge0\\2\sqrt{x}-2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\le5\\\sqrt{x}\ge1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le25\\x\ge1\end{cases}}\)\(\Rightarrow\)\(1\le x\le25\)\(\left(TM\right)\)

+ TH2\(\hept{\begin{cases}5-\sqrt{x}\le0\\2\sqrt{x}-2\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\ge5\\\sqrt{x}\le1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge25\\x\le1\end{cases}}\)\(\left(L\right)\)

            \(\Rightarrow\)\(1\le x\le25.\)Kết hợp ĐKXĐ: \(x\ne1\)

                         \(\Rightarrow\)\(1< x\le25\)

Vậy để \(A\ge\frac{3}{2}\)\(\Leftrightarrow\)\(1< x\le25\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Love
Xem chi tiết
Lê Hà Vy
Xem chi tiết
Xuân Trà
Xem chi tiết
Anh Quoc
Xem chi tiết
Park Jimin
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Anh Quoc
Xem chi tiết
Lê Hà Vy
Xem chi tiết
Aeris
Xem chi tiết