Cho \(B=\left[\frac{n}{3}\right]+\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{3}\right]\)
Tìm n\(\in N\) để B chia hết cho 3
Bài 1 :a, Tính tổng\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+.......+\left(-\frac{1}{7}\right)^{2007}\)
b, CMR \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+.......+\frac{99}{100!}<1\)
c, CMR: mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
Bài 2
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
b) \(B=\left(-1\frac{1}{2^2}\right)\left(-1\frac{1}{3^2}\right)\left(-1\frac{1}{4^2}\right)...\left(-1\frac{1}{2003^2}\right)\left(-1\frac{1}{2004^2}\right)\)
c) \(C=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\left(n\in N,n\ge2\right)\)
tính các tích sau với nEN, n lớn hơn bằng 2
a)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
b)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
c)\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)
1. Tìm giá trị lớn nhất của biểu thức 7lx-3l-l4x+8l-l2-3xl
2. Cho hàm số f(x) xác định với mọi x \(\varepsilon\)Q. Cho f(a+b) =f(a.b) với mọi a, b và f(2011) = 11. Tìm f(2012)
3.Cho hàm số f thỏa mãn f(1) =1; f(2) = 3; f(n) +f(n+2) = 2f(n+1) với mọi số nguyên dương n. Tính f(1) + f(2) + f(3)+...+f(30)
4. Tính giá trị của biểu thức \(\left(\frac{3}{4}-81\right)\left(\frac{^{3^2}}{5}-81\right)\left(\frac{3}{6}^3-81\right)...\left(\frac{3}{2014}^{2011}-81\right)\)
5. Đa thức P(x) cộng với đa thức Q(x) = \(x^3-2x^2-1\) được đa thức \(^{x^2}\). Tìm hệ số tự do của P(x)
6. Cho a, b, c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-a+c}{2a-3}=\frac{2}{3}\). Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3c\right)^3}\)
Bài 1:Cho A=7+73+75+...+72015.Chứng minh A chia hết cho 35
Bài 2:Tìm các số tự nhiên a,b sao cho:
a)\(\frac{5}{a}-\frac{2}{b}=\frac{1}{4}\)
b)\(a-b=5và\frac{\left(a,b\right)}{\left[a,b\right]}\frac{1}{6}\)
Bài 3:Tìm số tự nhiên n để phân số\(A=\frac{5n-11}{4n-13}\)có giá trị lớn nhất và nhỏ nhất là bao nhiêu
Bài 4:Thực hiện tính:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
Bài 1:
a,A=\(\left(-1\right)^{2n}\times\left(-1\right)^n\times\left(-1\right)^{n+1},n\in N\)N
b,B=\(\left(10000-1^2\right)\times\left(10000-2^2\right)\times\left(10000-3^2\right)...\left(10000-10000^2\right)\)
c,C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\times\left(\frac{1}{125}-\frac{1}{2^3}\right)....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d,D=\(1999.^{\left(1000-1^2\right).\left(1000-2^2\right)....\left(1000-10^3\right)}\)
giải nhanh giúp mk nha.À đúng rồi bạn nào có link đáp án đề lớp 7 của thầy NGUYỄN CAO CƯỜNG( tuyển sinh 247) thì chp mk với, tất cả đề cô mk ra đều có trong đó cả!!MK cần gấp lắm