Cho A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2012^2}-1\right)\)
B=\(\frac{-1}{2}\).So sánh A và B
Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
Và B =\(\frac{1}{2}\)
So sánh A và B
Cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{2018^2}-1\right)\)
B= \(-\frac{1}{2}\)
So sánh A và B
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)và B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
cho A=\(\left(\frac{1}{2^2}-1\right)\)\(\left(\frac{1}{3^2}-1\right)\)\(\left(\frac{1}{4^2}-1\right)\)...\(\left(\frac{1}{2013^2}-1\right)\)\(\left(\frac{1}{2014^2}-1\right)\)và B=\(-\frac{1}{2}\)hãy so sánh A và B
cho A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)......\left(\frac{1}{2018^2}-1\right)\) và B= \(-\frac{1}{2}\).So sánh A và B
A=\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)............\left(\frac{1}{2017^2}-1\right)\left(\frac{1}{2018^2}-1\right)\)
B=\(-\frac{1}{2}\)
So sánh A và B
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\); B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B