Tính gá trị của biểu thức sau:
a, \(A=\frac{1}{\sqrt{y-1}-\sqrt{x}}+\frac{1}{\sqrt{x^2-1}+\sqrt{y}}+\frac{\sqrt{y^3}-x}{\sqrt{x}-1}\)biết \(\hept{\begin{cases}\sqrt{2014}x+\sqrt{215}y=2016\\-2011x+2016y=2008\end{cases}}\)
b,\(B=\sqrt{x+\sqrt{2y+\sqrt{3x+\sqrt{4y+\sqrt{5x+\sqrt{6y+\sqrt{7x}}}}}}}\)biết \(\hept{\begin{cases}x=2016y-2031\\y=205x-1023\end{cases}}\)
1)Cho biểu thức P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm các giá trị của x sao cho P=\(\frac{1}{2}\)
b) Chứng minh P<= \(\frac{2}{3}\)
2)Tính giá trị của biểu thức Q=\(\frac{x-y}{x+y}\) biết x2-2y2=xy và x # 0,x+y # 0
Cho 2 số thực x, y thỏa mãn: \(x,y>-1\) và \(x-2y\ge1\).
Tính giá trị nhỏ nhất của biểu thức: \(A=\frac{x^2+y^2+2x+2y+2}{(x+1)\times\left(y+1\right)}\)
Cho 2 số thực x, y thỏa mãn: \(x,y>-1\) và \(x-2y\ge1\).
Tính giá trị nhỏ nhất của biểu thức: \(A=\frac{x^2+y^2+2x+2y+2}{(x+1)\times\left(y+1\right)}\)
Cho x + 2y > hoặc =1. Tính giá trị nhỏ nhất của biểu thức A = x^2 + y^2
Cho 2 số thực x và y thoả x+y=1 Tính giá trị biểu thức: A=x⁴-2x³-2x²y²-2y³+x²+y²+y⁴
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
cho các số x,y,z khác 0 thỏa mãn :
\(\frac{b^2y+c^2z}{x}=\frac{a^2z+a^2x}{y}=\frac{a^2x+b^2y}{z}=3\)và \(x+y+z\ne0\)
Tính giá trị biểu thức : \(P=\frac{\sqrt{2}}{a^2+3}+\frac{\sqrt{2}}{b^2+3}+\frac{\sqrt{2}}{c^2+3}\)