Cho biểu thức: \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)
a, Rút gọn biểu thức A.
b, CMR biểu thức A luôn dương.
c, Với giá trị nào của m thì A đạt giá trị lớn nhất
Cho biểu thức : A = \( {mn^2 +n^2(n^2-m)+1 \over m^2n^4+2n^4+m^2+2}\)
a)CMR với mọi giá trị m và n, A luôn luôn nhận giá trị dương.
b)Tìm giá trị của các biến để A đạt giá trị lớn nhất.
Cho \(Q=\frac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2-2}\)
a)Rút gọn Q
b)CMR:Q>0
c)Tìm m để Q đạt GTLN
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Cho biểu thức M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]\) \(:\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) tìm a để M=0
c) Tìm a để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
Cho biểu thức\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
Rút gọn MTìm giá trị của a để M đạt giá trị lớn nhấtCho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.