\(\frac{50}{111}>\frac{1}{4};\frac{50}{112}>\frac{1}{4};\frac{50}{113}>\frac{1}{4};\frac{50}{114}>\frac{1}{4}\)
\(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}>\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)(1)
\(\frac{50}{111}< \frac{1}{2};\frac{50}{112}< \frac{1}{2};\frac{50}{113}< \frac{1}{2};\frac{50}{114}< \frac{1}{2}\)
\(\Rightarrow A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)(2)
từ (1) và (2) \(\Rightarrow1< A< 2\)