Ta thấy : \(4=2^2;9=3^2;....;10000=100^2\) nên A có \(\left(100-2\right):1+1=99\) số hạng
Ta có :
\(\frac{3}{4}< \frac{4}{4}=1\)
\(\frac{8}{9}< \frac{9}{9}=1\)
\(\frac{15}{16}< \frac{16}{16}=1\)
\(......\)
\(\frac{9999}{10000}< \frac{10000}{10000}=1\)
\(\Rightarrow A=\frac{3}{4}+\frac{8}{9}+....+\frac{9999}{10000}< 1+1+...+1\)(Vì A có 99 số hạng nên cũng có 99 số 1 tương ứng)
\(\Rightarrow A< 99\)
\(A=\frac{3}{4}+\frac{8}{9}+...+\frac{9999}{10000}\)
\(A=1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{10000}\)
\(A=99-\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{10000}\right)\)
Vì biểu thức trong dấu ngoặc đơn luôn lớn hơn 0 nên A<99
Vậy A<99