Cho \(A=\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}.\)
Chứng minh : \(A>n-\frac{1}{2}\)
Tinh :
M = \(\frac{\frac{3}{20}-\frac{1}{15}+\frac{1}{195}}{\frac{1}{2}-\frac{1}{26}-\frac{9}{8}}\): 2,1(3)
N = \(\frac{1!}{4!}+\frac{2!}{5!}+\frac{3!}{6!}+...+\frac{12!}{15!}\)
tìm n biết;a.\(\frac{1^{n+3}}{2}:\frac{1^5}{2}=\frac{1^7}{2}\)b.\(\frac{1^{12-n}}{3}.\frac{1^5}{3}=\frac{1^{14}}{3}\)c.\(\frac{-32}{-2^n}=4\)d.\(\frac{8}{2^n}=2\)e.\(\frac{25^3}{5^n}=25\)g.\(\frac{1^{2n-1}}{2}=\frac{1}{8}\)l.\(^{8^{10}:2^n=4^5}\)k.\(2^n.81^4=27^{10}\)
giúp mình với mai mình học rồi
\(CMR:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\notinℕ\)
Tính tổng sau
a) \(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
b) \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)
1) Tính:
a) \(\frac{6^3-3.6^2+3^2}{-13}\)
b) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
2) Tìm n \(\in\)Z:
a) 27n : 3n = 9
b) \(\frac{25}{5^n}=5\)
c) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
d) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
BT1: Tìm n thuộc Z
\(\frac{1}{9}.27^n=3^n\)
\(\left(\frac{3}{7}\right)^n=\frac{81}{2401}\)
BT2: Tính
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(\frac{2.8^4.27^2+4.6^9}{2^7.6^6+2^7.40.9^4}\)
Bài 1 tìm x biết x=\(\frac{2}{3}.S\)
S=\(\frac{\left(9\frac{3}{8}:5.2+3,4.2\frac{7}{34}\right):1\frac{9}{16}}{0,31.8\frac{2}{5}-5,61:27\frac{1}{3}}\)
Tìm 15% của M biết
M=\(\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}:\frac{1-\frac{1}{3}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2}-\frac{19}{37}\)
1/ Tính:
a) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
b) \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3\)
2/ Tìm số tự nhiên n, biết:
a) \(\frac{16}{2^n}=2\); b) \(\frac{\left(-3\right)^n}{81}=-27\); c) \(8^n:2^n=4\)