\(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc \)
\(\Leftrightarrow\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}\left(abc\ne0\right)\)
\(\Leftrightarrow A=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=3\)
\(a.\) Chú ý rằng nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=0\)
Thật vậy, ta có: \(a+b+c=0\) \(\Rightarrow\) \(c=-\left(a+b\right)\)
Do đó: \(a^3+b^3+c^3=a^3+b^3+\left[-\left(a+b\right)\right]^3=-3a^2b-3ab^2=-3ab\left(a+b\right)=3abc\)
Áp dụng nhận xét trên, ta có:
\(A=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)=\frac{1}{abc}.3abc=3\) với \(a,b,c\ne0\)
\(b.\) Từ \(a+b+c=0\) \(\Rightarrow\) \(b+c=-a\) \(\Rightarrow\) \(\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow\) \(b^2+2bc+c^2=a^2\) \(\Rightarrow\) \(a^2-b^2-c^2=2bc\)
Tương tự, \(b^2-c^2-a^2=2ac\) và \(c^2-a^2-b^2=2ab\)
Mặt khác, từ \(a+b+c=0\) \(\Rightarrow\) \(a^3+b^3+c^3=3abc\) (theo nhận xét câu \(a.\))
Do vậy, \(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
với \(a,b,c\ne0\)