Có b^2=ac nên a/b=b/c(1)
c^2=bd nên b/c=c/d(2)
Từ (1)&(2)\(\Rightarrow\)\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=M
AD t/c dãy các tỉ số bằng nhau,ta có:
M=(a+b+c)^3/(b+c+d)^3(3)
M=a^3+b^3+c^3/b^3+c^3+d^3(4)
Từ 3 và 4 thì suy ra dpcm
Có b^2=ac nên a/b=b/c(1)
c^2=bd nên b/c=c/d(2)
Từ (1)&(2)\(\Rightarrow\)\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=M
AD t/c dãy các tỉ số bằng nhau,ta có:
M=(a+b+c)^3/(b+c+d)^3(3)
M=a^3+b^3+c^3/b^3+c^3+d^3(4)
Từ 3 và 4 thì suy ra dpcm
Cho \(a^2=bd;b^2=ac;a+b+c\ne0;a^3+b^3+c^3\ne0\)
Chứng minh rằng \(\frac{d}{c}=\frac{a^3+b^3+c^3}{b^3+c^3+a^.}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)\(\ne\)và \(c\ne0\). Chứng minh rằng
a)\(\left(\frac{a-b}{c-d^{ }}\right)^2=\frac{ab}{cd}\)
b)\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Cho \(\overline{abcd}\ne0;b^2=ca;c^2=bd.CMR\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}.\)
Cho a,b,c,d là 4 số khác 0 thoả mãn\(b^2=ac,c^2=bd\) và\(b^3+c^3+d^3\)khác 0. Chứng minh rằng:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)chứng mih rằng
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{axb}{cxd}\)
\(\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\frac{a^3-b^3}{c^3-d^3}\)
cho \(b^2=a.c;c^2=b.d\) . với \(b,c,d\ne0;b+c\ne d;b^3+c^3\ne d^3\)
Chứng minh rằng
\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
Cho \(\frac{a}{b}=\frac{c}{d}CMR\)
\(\frac{\left(a^2+b^2\right)^3}{\left(c^2+d^2\right)^3}=\frac{\left(a^3+b^3\right)^2}{\left(c^3+d^3\right)^2}\)
Ai nhanh vs gọn thì chọn cho
cho a^2=bd ; b^2 = ac ; a+b+c không bằng 0;a^3+b^3+c^3 không bằng 0 cmr :\(\frac{d}{c}\)=\(\frac{a^3+b^3+c^3}{b^3+c^3+a^3}\)=\(\frac{\left(a+b+c\right)^3}{\left(b+c+a\right)^3}\)
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)