Cho \(a,b,c,d>0\).Tìm giá trị nhỏ nhất của biểu thức:
\(\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)
\(Cho\)\(a,b,c,d,e>0\)\(và\)\(a+b+c+d+e=4\)
\(CMR\)\(\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\ge\)\(16\)
Cho các số dương a, b, c, d có tổng bằng 2. Tìm giá trị nhỏ nhất của biểu thức :\(A=\dfrac{\left(a+b+d\right)\left(a+b\right)}{abcd}\)
( Gợi ý : Áp dụng \(\left(a+b\right)^2\ge4ab\) )
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
Rút gọn rồi tính giá trị biểu thức :
\(E=\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)
Biết : \(1-\frac{x^2}{abc}=0\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho a,b,c đôi một khác nhau. Tính giá trị của biểu thức:
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
Cho a,b,c là các số thực khác 0 thỏa mãn: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^2+b^3+c^3}{abc}=2\)
Tính giá trị của biểu thức \(A=\left(\left(a+b\right)^{2013}-c^{2013}\right)\left(\left(b+c\right)^{2013}-a^{2013}\right)\left(\left(c+a\right)^{2013}-b^{2013}\right)\)
Cho 3x-y=6 Tính giá trị biểu thức
A= \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)