a,b,c,d > 0. cmr: 16*(abc+bcd+cda+dab) nhỏ hơn hoặc bằng ( a+b=c=d)^3
Cho abcd = 0.
Chứng minh \(A=\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)
Cho a,b,c,d>0
\(16\left(abc+bcd+cda+dab\right)\le\left(a+b+c+d\right)^3\)
cho a;b;c;d >0 thỏa mãn a+b+c+d=1
tìm min của M=\(\frac{â^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\)
cho a,b,c,d >0 và 2(a+b+c+d)>-abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6
cho a,b,c,d>0 và a+b+c+d=4. Chứng minh rằng: a^4+b^4+c^4+d^4>=a^3+b^3+c^3+d^3
Cho a,b,c,d>0 \(\frac{a^4}{^{a^3+2b^3}}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2a^3}+\frac{d^4}{d^3+2a^3}>\frac{a+b+c+d}{3}\)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
ek giúp bài này vs
cho a,b,c,d >0 và 2(a+b+c+d)>=abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6