Từ \(b^2=ac\)\(\Rightarrow\frac{b}{a}=\frac{c}{b}\)(1)
Từ \(c^2=bd\)\(\Rightarrow\frac{c}{b}=\frac{d}{c}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)
\(\Rightarrow\left(\frac{b}{a}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{d}{c}\right)^3=\frac{b^3}{a^3}=\frac{c^3}{b^3}=\frac{d^3}{c^3}=\frac{b^3+c^3+d^3}{a^3+b^3+c^3}\)
mà \(\left(\frac{b}{a}\right)^3=\frac{b}{a}.\frac{b}{a}.\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}=\frac{b.c.d}{a.b.c}=\frac{d}{a}\)
\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}=\left(\frac{b}{a}\right)^3\left(đpcm\right)\)
Bạn giải thích cho mk là vì sao \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}\) với ạ? Mk k hiểu chỗ này
Đây nhé! Ta có: \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}\)(1) mà mình đã chứng minh được \(\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)rồi
Nên mình chỉ cần thay \(\frac{b}{a}=\frac{c}{b}\)và \(\frac{b}{a}=\frac{d}{c}\)vào (1) là xong.
Bạn có hiểu cái gì ko? Nếu ko thì thông cảm, mình chỉ biết làm thôi chứ giải thích cho ai đó thì mình chịu.