Cho a/b=c/d. Chứng minh rằng : 3aa +5ab/7aa-10bb = 3cc+5cd/7cc-10dd
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{3a^2+10b^20-ab}{7a^2+b^2+5ab}=\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}\)
Cho a/b=c/d. Chứng minh rằng 3a^2+5ab/a^2-b^2=3c^2+5cd/c^2-d^2
\(Cho\frac{a}{b}=\frac{c}{d}\left(\ne1\right).\)
Chứng minh rằng: \(\frac{3a^2+5ab}{a^2-b^2}\)=\(\frac{3c^2+5cd}{c^2-d^2}\)
cho tỉ lệ thức a phần b=c phần d.Chứng minh rằng 3a2+5ab phần 7a2-10b2 = 3c2+5cd phần 7c2-10d2
Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng:
a) \(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}\)
b) \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
\(Cho\frac{a}{b}=\frac{c}{d}.CM:\)\(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: a, \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
b, \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\) chứng minh rằng \(\frac{3a^2+5ab}{7a^2-10b^2}\)= \(\frac{3c^2+5ac}{7c^2-10d^2}\)