cho a , b , c , d là các số hữu tỉ dương và a/b = c/d . chứng minh rằng
a ) a.c/b.d = a^2+ c^2 / b^2 + d^2
b ) (a+2.c ). (b + d ) =(a+c ) .(b+ 2.d )
cho 4 so a,b,c,d sao cho a.c=b^2,b.d=c^2. chung minh a/d=a^2+b^2+c^2/b^2+c^2+d^2
Có a/b=c/d chứng minh rằng \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}\)
Cho a/b = c/d. chứng minh a2+c2/b2+d2 = a2-c2/b2-d2 = a.c/b.d
cho a.c=b^2;b.d=c^2 và a,b,c,d khác 0. Chừng minh rằng: a^3.d+b^3.d+c^3.d=a.b^3+c^3.a+a.d^3
Chứng minh:
\(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
\(a,\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\) \(b,\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)\(c,\frac{a.c}{b.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
GIẢI GIÚP TỚ NHANH NHÉ! CẢM ƠN NHIỀU!
Cho a/b = c/d với a,b,c,d khác 0. CMR: a^2-c^2/b^2-d^2=a.c/b.d
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh :
\(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+c^2}\)