ta có\(\frac{a}{b}\)= \(\frac{c}{d}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)
\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a.c}{b.d}\)
\(\frac{a^2+c^2}{b^2+c^2}\)=\(\frac{a.c}{b.d}\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}\times\frac{c}{d}=\frac{c^2}{d^2}\)
\(\frac{c}{d}=\frac{a}{b}\Rightarrow\frac{a}{b}\times\frac{c}{d}=\frac{a^2}{b^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(ĐPCM)