Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Gái Mùa Đông

Cho a+b+c=6 và a2+b2+c2=ab+bc+ca .Tính giá trị biểu thức C=(1-a)2021+(b-1)2021+(c-2)2021

Lê Duy Khương
7 tháng 3 2021 lúc 8:46

Ta có

   \(a+b+c=6\)

  \(\Leftrightarrow\left(a+b+c\right)^2=36\)

  \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)

   Mà \(a^2+b^2+c^2=ab+bc+ca\)

 Khi đó ta có

     \(3\left(ab+bc+ca\right)=36\)

 \(\Leftrightarrow ab+bc+ca=12\)

  \(\Leftrightarrow\hept{\begin{cases}2ab+2bc+2ca=24\\2a^2+2b^2+2c^2=24\end{cases}}\)

 \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\Leftrightarrow a=b=c=\frac{6}{3}=2\)  ( 1 )

  Thay (1) vào C ta có

        \(C=\left(1-2\right)^{2021}+\left(2-1\right)^{2021}+\left(2-2\right)^{2021}\)

             \(=-1+1+0=0\)

         Vậy ......................

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thế Quang
Xem chi tiết
hello lala
Xem chi tiết
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Đường Kỳ Quân
Xem chi tiết
Xiuu
Xem chi tiết
Chanhh
Xem chi tiết
Pham Trong Bach
Xem chi tiết