\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Tìm GTNN của biểu thức: \(B=\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}+\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\) với a, b, c, d là các số dương và abcd=1
Cho a, b, c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Rút gọn các biểu thức:
a) M= \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)
Cho 3 số a, b, c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\). Tính giá trị của biểu thức: \(M=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc.Tìm GTNN của biểu thức P= \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
cho a,b,c dương và a+b+c=1.tìm gtnn của P= \(\dfrac{1}{2021ac}+\dfrac{1}{2021bc}\)
Cho a,b,c là các số dương.
a) CMR: \(a^3+b^3\ge a^2b+ab^2\)
b) Giả sử abc=1. Tìm GTLN của biểu thức:
\(P=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Cho các số a, b, c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\). Tính giá trị của biểu thức: \(M=\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1