Cho a.b.c=2015
Tính A=2015/ab+a+2015+b/bc+b+2015+2015/abc+bc+c
\(chứng_{ }minh_{ }\frac{a}{b}=\frac{c}{d}_{ }biết_{ }\frac{a^{2015}+b^{2015}}{a^{2015}-b^{2015}}=\frac{c^{2015}+d^{2015}}{c^{2015}-d^{2015}}\)
Cho 3 số dương a,b,c
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
\(Tính:A=\frac{21ab^{2015}+12bc^{2015}+15ca^{2015}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh::\(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)với \(b,d\ne0,c\ne d\)
Chứng minh rằng :Nếu a/b=c/d thì \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\left(\frac{a+b}{c+d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)
Cho:\(\frac{a}{b}\)\(=\frac{c}{d}\) và b+d khác 0. CMR:
a) \(\frac{a^{2015}+c^{2015}}{b^{2015}+d^{2015}}\)=\(\frac{\left(a+c\right)^{2015}}{\left(b+d\right)^{2015}}\)
b) \(\frac{a^n+c^n}{b^n+d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}\)(n thuộc N*)
CMR: Nếu \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}thì\frac{a}{2014}=\frac{b}{2015}\)
tinh \(G=\frac{\left(1+\frac{2015}{1}\right)+\left(1+\frac{2015}{2}\right)+...+\left(1+\frac{2015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)+....+\left(1+\frac{1000}{2015}\right)}\)