a) Cho a,b,c là các số thực thỏa mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\) . Tính giá trị của biểu thức \(A=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
b) Rút gọn biểu thức : \(\frac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Nhờ các bn giải dùm !!!
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
1) Cho x,y >0 thỏa : \(\left(x+\sqrt{x^2+2017}\right)\)\(\left(y+\sqrt{y^2+2017}\right)\)\(=2017\)
Tính A= \(x^{2017}+y^{2017}+2017\)
2) Tìm x,y,z biết:
\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
3) Cho a,b,c là các số hữu tỉ khác nhau. Cmr:
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ.
cho a,b,c là các số thực khác 0 và (a+b+b)x (\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))=1.
tính A= (a2016 - b2016)x(b2017+c2017)x(c2018 - a2018)
1, a, Cho a khác-b; a khác -c; b khác -c. CMR: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\) b, CHo hai sô x,y thỏa mãn \(\left(x+\sqrt{2017+x^2}\right)\left(y+\sqrt{2017+y^2}\right)=2017\)Tính giá trị của biểu thức:\(P=x^{2017}+y^{2017}+2017\)
cho a+b+c=2017 và \(\frac{1}{a+b}\) + \(\frac{1}{b+c}\)+ \(\frac{1}{c+a}\)= \(\frac{1}{10}\).
Tính M= \(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)+\(\frac{c}{a+b}\)
a) Cho \(a,b,c\in R\)thỏa \(a+b+c=2018\)
Tính \(M=\frac{1}{a^{2107}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
b)Tìm số tự nhiên x,y thỏa \(5^x-2^y=1\)
MONG CÁC BẠN ZẢI NHANH ZÚP MK ĐANG CẦN GẤP
Cho a+b+c>0 t/m:
\(\sqrt{a^2+b^2}+\sqrt{c^2+b^2}+\sqrt{c^2+a^2}=\sqrt{2017}\)
Chứng minh rằng ;
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2017}{2}}\)