Chứng minh rằng : Nếu a + b + c = 1/a + 1/b + 1/c =0 ; a, b, c khác 0 thì ( a6 + b6 + c6 ) : ( a3 + b3 + c3 ) = abc .
Cho a+b+c=1/a+1/b+1/c=0; abc khác 0. C/m \(a^6+b^6+c^6=3a^2b^2c^2\)
Cho a=b=c=\(\frac{1}{a}\)=\(\frac{1}{b}\)=\(\frac{1}{c}\)=0
Chứng minh a6+b6+c6=3(abc)2
Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
1) Cho a,b,c là ba số thực thỏa mãn: abc khác 0, a+b+c khác 0 và a3+b3+c3=3abc. Chứng minh
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) ;abc khác 0. C/m \(a^6+b^6+c^6=3a^2b^2c^2\)
cho a+b+c=a^2+b^2+c^2 và a,b,c khác 0 chứng minh rằng 1/a^2+1/b^2+1/c^2=3/abc