Cho 3 số a,b,c thoả mãn a.b.c=1. Tính tổng \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
Cho a.b.c = 1.Tính :
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
cho ba số a,b,c thỏa mãn a.b.c=1
chứng minh\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{ac+c+1}=1\)
Cho a,b,c là các số thực thoả mãn a.b.c = 1. Chứng minh rằng :
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=1\)
Cho 3 số a, b, c thỏa mãn: a.b.c=1. Tính S= \(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
Cho a.b.c=2017
Tính P=\(\frac{2017+a}{ab+2017a+2017}\)+\(\frac{b}{bc+b+2017}\)+\(\frac{c}{ac+c+1}\)
cho 3 số a,b,c thõa mãn : a.b.c=1
C/M : \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=1\)1
cho a,b,c thuộc R và a.b.c=1.chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
cho số a,b,c thỏa mãn : a.b.c= 1
chứng minh : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)