cho a,b,c >1 Cmr a/ ( căn b -a) + b/ (căn c -1) + c/(căn a -1 ) >= 12
cho a,b,c>0 CMR căn(a*(b+1))+căn(b(c+1)+căn(c(a+1))<=3/2(a+1)(b+1)(c+1)
Cho a; b; c; d là 4 số dương thỏa mãn ab.cd=1. CMR: (căn(1+a)+căn(1+b)).(căn(1+c)+căn(1+d))>=8
cho a,b,c>0 và a+b+c=1 cmr căn(4a+1)+căn(4b+1)+căn(4c+1)<5
1/căn a + 1/ căn b =1/căn c CMR : căn (ab)/c - căn bc/a - căn (ca)/b=3
Giup mik vs !!
a,b,c>0 a+b+c=1 cmr B=căn (a^2-ab+b^2)+căn(b^2-bc+c^2)+căn(c^2-ac+a^2)>=1
Cho a, b, c là các số dương . Cmr:
Nếu căn bậc 2 của 1 +b cộng căn bậc 2 của 1 + c >= 2 nhân căn bậc 2 của 1 + a thì b+c >= 2a
a,b,c>0: a+b+c=2. CMR a/căn(4a+3bc) + b/căn(4b+3ac) + c/căn(4c+3ab) <=1
Với a,b,c>0 CMR
a/a+căn[(a+b)(a+c)] + b/b+căn[(a+b)(b+c)] + c/c+căn[(a+c)(b+c)] bé hơn hoặc bằng 1