Tham khao =))
Câu hỏi của Vu Quang Huy - Toán lớp 8 - Học toán với OnlineMath
Tham khao =))
Câu hỏi của Vu Quang Huy - Toán lớp 8 - Học toán với OnlineMath
\(Cho \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 Tính giá trị biểu thức sau A = \frac{a^{2}}{a^{2}+2bc} + \frac{b^{2}}{b^{2}+2ac} + \frac{c^{2}}{c^{2}+2ab}\)
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
a, Tìm giá trị nguyên của x để biểu thức A = \(\frac{^{x^2+4}}{x-1}\)( với x khác 1) có giá trị là 1 số nguyên
b, Cho các số a,b,c khác 0 thỏa mãn: a+b+c = 0 và biểu thức:
P=\(\frac{ab}{a^2+b^2-c^2}\)+\(\frac{bc}{b^2+c^2-a^2}\)+\(\frac{ca}{c^2+a^2-b^2}\)
Chứng minh rằng: Giá trị của P khi được xác định luôn là một số hữu tỉ
Cho ba số a,b,c khác 0 thảo mãn :a+b+c=0. Tính giá trị biểu thức :
P= \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
1) BIẾT a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một .Chứng minh ƯCLN( abc ; ab+bc+ca ) = 1
2) chứng minh rằng nếu a,b,c thỏa mãn bất đẳng thức \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}...\)thì /a/ = /b/ = /c/
dấu / / là giá trị tuyệt đối nha mk cần gấp các bạn cố giúp mk
Cho các số thực a,b,c thỏa mãn:
\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=6\)
Tính giá trị của biểu thức \(B=a^{2020}+b^{2020}+c^{2020}\)
Cho các số a, b, c thỏa mãn điều kiện\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Tính giá trị biểu thức:\(P=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
cho a,b,c là các số thực khác 0 và thỏa mãn ab+bc+ca=1.
Tính giá trị của biểu thức: M=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}-\frac{2}{\left(a-b\right)\left(b+c\right)\left(c+a\right)}\)