Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Minh Trần

Cho a,b,c>0

Cm(a+b+c)(\( {1\over a}\)+\({1 \over b}\)+\({1\over c}\))>=9

Giúp minh vơiz 🙂😊🤗

Đinh quang hiệp
30 tháng 4 2018 lúc 15:28

vì a;b;c >0 nên 1/a;1/b;1/c>0

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}\)(bđt cosi)

\(=3\sqrt[3]{abc}\cdot3\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\sqrt[3]{abc}\cdot\frac{1}{\sqrt[3]{abc}}=9\cdot\frac{\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)

\(\Rightarrow\)đpcm

Không Tên
30 tháng 4 2018 lúc 19:54

cách khác nhé:

\(VT=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m BĐT phụ:    \(\frac{x}{y}+\frac{y}{x}\ge2\)      (x,y > 0)

               \(\Leftrightarrow\)\(\frac{x^2}{xy}+\frac{y^2}{xy}\ge\frac{2xy}{xy}\)

              \(\Leftrightarrow\) \(\frac{x^2+y^2-2xy}{xy}\ge0\)

             \(\Leftrightarrow\) \(\frac{\left(x-y\right)^2}{xy}\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\) \(x=y\)

Áp dụng BĐT trên ta có:

      \(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

hay   \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)  (đpcm)

Dấu  "="  xảy ra  \(\Leftrightarrow\)\(a=b=c\)


Các câu hỏi tương tự
builecong anh
Xem chi tiết
Thảo Phạm
Xem chi tiết
Alice Andrea
Xem chi tiết
Ayakashi
Xem chi tiết
Nguyễn Hồng Quân
Xem chi tiết
Nguyễn Hồng Quân
Xem chi tiết
Đinh Sơn
Xem chi tiết
Phạm Gia Hân
Xem chi tiết
Trần Nam Hải
Xem chi tiết